The generator matrix

 1  0  0  0  1  1  1  X  1  1  X  1  1  0  X  1  0  1  1  X  X  1  X  0  0  1  1  1  0  1  0  1  1  0  1  X  0  1  1  1  X  X  X  0  1  1  X  1  0  0  0  1  1  0  1  X  1  0  X  1  1  0  X  1  X  1  1  1  X  1  1  1  1  1  1  1  1  0  1
 0  1  0  0  0  0  0  0  1 X+1  1  1 X+1  1  1  X  X  0  1  0  1  1  1  1  0  0  X  1  1 X+1  1 X+1 X+1  0  X  X  X X+1 X+1  X  1  X  1  1  1  X  1  X  1  1  0  X  1  0  0  1 X+1  X  X  X  0  1  1 X+1  0  1  0  X  1 X+1  0  0  X  1  1 X+1 X+1  1  0
 0  0  1  0  0  1 X+1  1  1 X+1  0  0  0  1  1  0  0  1  X  1  X  1  1 X+1  1  X X+1  0  0  1  0  X  1  X X+1  1  1 X+1  X  0  1  1  0 X+1  1  X X+1  1  X  1  1  0 X+1  0  X  X  X  1  X  X  0  X  0 X+1  X X+1  1  0  1  X  X X+1  0  0  X  1 X+1  1  0
 0  0  0  1  1 X+1  0 X+1  0  1 X+1 X+1  0 X+1  0  1  1  1  1  1  1  X  X  1  X  0  0  0  0  1  X  X  X  1  0  X  X X+1  1  0  1 X+1  1 X+1  0 X+1  X X+1 X+1  0  X X+1  1  1  0  X  X  1  1  0  X  X X+1 X+1  1  1  0 X+1  X  0  X  X  X  X X+1  0  X X+1  X
 0  0  0  0  X  X  X  0  X  X  0  X  X  0  0  0  X  0  0  X  X  0  X  X  X  X  0  0  X  0  0  0  X  X  X  X  0  X  X  X  0  X  X  X  0  X  0  0  0  X  0  X  0  X  0  X  X  0  0  0  X  0  X  0  0  X  0  0  0  0  X  0  0  X  0  X  X  X  0

generates a code of length 79 over Z2[X]/(X^2) who�s minimum homogenous weight is 74.

Homogenous weight enumerator: w(x)=1x^0+40x^74+118x^75+67x^76+52x^78+80x^79+29x^80+16x^82+26x^83+16x^84+10x^86+16x^87+10x^88+6x^90+8x^91+3x^92+2x^94+6x^95+2x^98+2x^100+2x^103

The gray image is a linear code over GF(2) with n=158, k=9 and d=74.
This code was found by Heurico 1.16 in 0.13 seconds.